Geometri Jalan Perkotaan
Daftar isi

<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daftar isi</td>
<td>Daftar isi</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>Daftar tabel</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Daftar gambar</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>Prakata</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>Pendahuluan</td>
<td>vi</td>
</tr>
<tr>
<td>1</td>
<td>Ruang lingkup</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Acuan normatif</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Istilah dan definisi</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Ketentuan umum</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Ketentuan teknis</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5.1 Klasifikasi jalan</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5.2 Penentuan jumlah lajur</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>5.3 Kecepatan rencana (VR)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>5.4 Kendaraan rencana</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>5.5 Bagian-bagian jalan</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>5.5.1 Damaja</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>5.5.2 Dawasja</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>5.5.3 Penempatan utilitas</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>5.6 Potongan melintang</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>5.6.1 Komposisi potongan melintang</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>5.6.2 Jalur lalu-lintas kendaraan</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>5.6.3 Lebar jalur</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>5.6.4 Lajur</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>5.6.5 Kemiringan melintang jalan</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>5.6.6 Bahu jalan</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>5.6.7 Jalur lambat</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>5.6.8 Separator jalan</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>5.6.9 Median jalan</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>5.6.10 Jalur hijau</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>5.6.11 Fasilitas parkir</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>5.6.12 Jalur lalu-lintas untuk pejalan kaki</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>5.7 Jarak pandang</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>5.7.1 Jarak pandang henti</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>5.7.2 Daerah bebas samping di tikungan</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>5.8 Alinyemen horisontal</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>5.8.1 Bentuk tikungan</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>5.8.2 Panjang tikungan</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>5.8.3 Superelevasi</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>5.8.3.1 Jari-jari tikungan</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>5.8.3.3 Lengkung peralihan</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>5.8.3.4 Diagram superelevasi</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>5.8.4 Pelebaran peralihan</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>5.8.5 Tikungan majemuk</td>
<td>38</td>
</tr>
</tbody>
</table>
5.9 Alinyemen vertikal ... 40
5.9.1 Umum ... 40
5.9.2 Kelandaian maksimum ... 40
5.9.3 Panjang lengkung vertikal ... 41
5.9.4 Koordinasi alinyemen ... 44

Lampiran A Daftar nama dan lembaga (informatif) .. 45

Bibliografi ... 46
Daftar tabel

<table>
<thead>
<tr>
<th>Tabel</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabel 1</td>
<td>Klasifikasi jalan secara umum menurut kelas, fungsi, dimensi kendaraan</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Maksimum dan muatan sumbu terberat (MST)</td>
<td></td>
</tr>
<tr>
<td>Tabel 2</td>
<td>Ekivalen mobil penumpang (emp) untuk jalan perkotaan tak terbagi (UD)</td>
<td>7</td>
</tr>
<tr>
<td>Tabel 3</td>
<td>Ekivalen mobil penumpang (emp) untuk jalan perkotaan satu arah dan terbagi</td>
<td>8</td>
</tr>
<tr>
<td>Tabel 4</td>
<td>Kecepatan rencana (V_R) sesuai klasifikasi jalan di kawasan perkotaan</td>
<td>9</td>
</tr>
<tr>
<td>Tabel 5</td>
<td>Dimensi kendaraan rencana (m)</td>
<td>10</td>
</tr>
<tr>
<td>Tabel 6</td>
<td>Tipe-tipe jalan</td>
<td>16</td>
</tr>
<tr>
<td>Tabel 7</td>
<td>Lebar lajur jalan dan bahu jalan</td>
<td>16</td>
</tr>
<tr>
<td>Tabel 8</td>
<td>Lebar median jalan dan lebar jalan tepian</td>
<td>18</td>
</tr>
<tr>
<td>Tabel 9</td>
<td>Lebar trottoar minimal (m)</td>
<td>20</td>
</tr>
<tr>
<td>Tabel 10</td>
<td>Jarak pandang henti (S_s)</td>
<td>23</td>
</tr>
<tr>
<td>Tabel 11</td>
<td>Panjang bagian lengkung minimum</td>
<td>27</td>
</tr>
<tr>
<td>Tabel 12</td>
<td>Jari-jari tikungan minimum, R_{min} (m)</td>
<td>28</td>
</tr>
<tr>
<td>Tabel 13</td>
<td>Hubungan parameter perencanaan lengkung horisontal dengan kecepatan rencana</td>
<td>29</td>
</tr>
<tr>
<td>Tabel 14</td>
<td>Panjang minimum lengkung peralihan, L_s (m)</td>
<td>30</td>
</tr>
<tr>
<td>Tabel 15</td>
<td>Tingkat perubahan kelandaian melintang maksimum, Δ (m/m)</td>
<td>30</td>
</tr>
<tr>
<td>Tabel 16</td>
<td>Jari-jari tikungan yang tidak memerlukan lengkung peralihan</td>
<td>31</td>
</tr>
<tr>
<td>Tabel 17</td>
<td>Nilai perhitungan dan perencanaan untuk pelebaran jalan pada jari-jari jalan (2 lajur 2 lajur, 1 lajur atau 2 lajur) untuk kendaraan rencana truk as tunggal (SU)</td>
<td>36</td>
</tr>
<tr>
<td>Tabel 18</td>
<td>Nilai perhitungan dan perencanaan untuk pelebaran jalan pada jari-jari jalan (2 lajur 2 lajur, 1 lajur atau 2 lajur) untuk kendaraan rencana truk semi trailer kombinasi sedang (WB-12)</td>
<td>37</td>
</tr>
<tr>
<td>Tabel 19</td>
<td>Kelandaian maksimum yang diizinkan untuk jalan arteri perkotaan</td>
<td>41</td>
</tr>
<tr>
<td>Tabel 20</td>
<td>Kontrol perencanaan untuk lengkung vertikal cembung berdasarkan jarak pandang henti</td>
<td>42</td>
</tr>
<tr>
<td>Tabel 21</td>
<td>Kontrol perencanaan untuk lengkung vertikal cekung berdasarkan jarak pandang henti</td>
<td>43</td>
</tr>
</tbody>
</table>
Daftar gambar

Gambar 1 Kendaraan rencana ... 11
Gambar 2 Tipikal Damaja, Damija dan Dawasja 13
Gambar 3 Tipikal penampang melintang jalan perkotaan 2-lajur-2-arah tak terbagi yang dilengkapi jalur pejalan kaki ... 14
Gambar 4 Tipikal potongan melintang jalan 2-lajur-2-arah tak terbagi, yang dilengkapi Jalur hijau, jalur sepeda, trotoar dan saluran tepi yang ditempatkan di bawah trotoar ... 15
Gambar 5 Tipikal potongan melintang yang dilengkapi median (termasuk jalur tepian), Pemisah jalur, jalur lambat dan trotoar ... 15
Gambar 6 Tipikal kemiringan melintang bahu jalan 17
Gambar 7 Tipikal median yang diturunkan ... 19
Gambar 8 Tipikal median yang ditinggikan .. 19
Gambar 9 Tipikal penempatan trotoar di sebelah luar bahu 21
Gambar 10 Tipikal penempatan trotoar di sebelah luar jalur parkir 21
Gambar 11 Tipikal penempatan trotoar di sebelah luar jalur huai 21
Gambar 12 Diagram ilustrasi komponen untuk menentukan jarak pandang horisontal (Daerah bebas samping) .. 23
Gambar 13 Batasan perancangan pengendalian disain untuk jarak pandang henti Pada tikungan ... 24
Gambar 14 Tikungan Full Circle (FC) .. 25
Gambar 15 Tikungan Spiral – Circle – Spiral (SCS) 25
Gambar 16 Tikungan Spiral – Spiral (SS) ... 26
Gambar 17 Diagram yang memperlihatkan metoda pencapaian superelevasi Untuk tikungan ke kanan ... 32
Gambar 18 Pencapaian superelevasi pada tikungan tipe SCS 33
Gambar 19 Pencapaian superelevasi pada tikungan tipe FC 33
Gambar 20 Metoda pencapaian superelevasi pada tikungan tipe SCS dengan bentuk tiga dimensi ... 34
Gambar 21 Tikungan majemuk searah yang harus dihindarkan 38
Gambar 22 Tikungan majemuk searah dengan sisipan bagian lurus minimum sepanjang 20 meter ... 39
Gambar 23 Tikungan majemuk baik arah yang harus dihindarkan 39
Gambar 24 Tikungan majemuk balik arah dengan sisipan bagian lurus minimum sepanjang 30 meter ... 40
Gambar 25 Parameter yang dipertimbangkan dalam menentukan panjang lengkung vertikal cembung untuk menetapkan jarak pandang henti/menyiap 41
Gambar 26 Jarak pandang pada lintasan di bawah 44
Prakata

Standar ini diharapkan dapat menjadi standar bagi semua pihak yang terlibat dalam perencanaan jalan perkotaan.

Tata cara penulisan standar ini mengacu pada standar dari Badan Standarisasi Nasional (BSN), Nomor 8 tahun 2000.
Standar Geometri Jalan Perkotaan ini bertujuan untuk mendapatkan keseragaman dalam merencanakan geometri jalan khususnya di kawasan perkotaan, sehingga dihasilkan geometri jalan yang dapat memberikan keselamatan, kelancaran, dan kenyamanan bagi pengguna jalan.

Standar perencanaan geometrik untuk jalan perkotaan (Maret 1992) yang disusun oleh Direktorat Jenderal Bina Marga, Departemen Pekerjaan Umum, dikembangkan menjadi:

1. Standar Geometri Jalan Perkotaan (ruas jalan), RSNI T-14-2004;
2. Standar Geometri Persimpangan (sebidang/tidak sebidang) Jalan Perkotaan;
3. Tata Cara Perencanaan Geometri Persimpangan Tidak Sebidang (Flyover/Overpass/Underpass) dan lain-lain.

Geometri Jalan Perkotaan

1 Ruang lingkup

2 Acuan normatif

Standar geometri jalan perkotaan ini merujuk pada buku-buku acuan sebagai berikut :

Undang Undang RI Nomor 13 Tahun 1980 tentang Jalan.
Peraturan Pemerintah RI Nomor 26 Tahun 1985 tentang Jalan.
Standar Nasional Indonesia (SNI), No. 03-2447-1991, Spesifikasi Trotoar
Pedoman Teknis No. Pt–02–2002–B, Tata Cara Perencanaan Geometri Persimpangan Sebidang ;

3 Istilah dan definisi

Istilah dan definisi yang digunakan dalam standar ini adalah sebagai berikut :

3.1 jalan perkotaan

jalan di daerah perkotaan yang mempunyai perkembangan secara permanen dan menerus sepanjang seluruh atau hampir seluruh jalan, minimum pada satu sisi jalan, apakah berupa perkembangan lahan atau bukan; jalan di atau dekat pusat perkotaan dengan penduduk lebih dari 100.000 jiwa selalu digolongkan dalam kelompok ini; jalan di daerah perkotaan dengan penduduk kurang dari 100.000 jiwa juga digolongkan dalam kelompok ini, jika mempunyai perkembangan samping jalan yang permanen dan menerus.
[MKJI, Tahun 1997]

3.2 jalan arteri

jalan yang melayani angkutan utama dengan ciri-ciri perjalanan jarak jauh, kecepatan rata-rata tinggi dan jumlah jalan masuk dibatasi secara efisien.
[Undang-Undang RI No. 13 Tahun 1980]

3.3 jalan kolektor

jalan yang melayani angkutan pengumpulan/pembagian dengan ciri-ciri perjalanan jarak sedang, kecepatan rata-rata yang sedang dan jumlah jalan masuk dibatasi.
[Undang-Undang RI No. 13 Tahun 1980]
3.4
jalan lokal
jalan yang melayani angkutan setempat dengan ciri-ciri perjalanan jarak dekat, kecepatan rata-rata rendah dan jumlah jalan masuk tidak dibatasi.
[Undang-Undang RI No. 13 Tahun 1980]

3.5
jalan arteri primer
jalan yang menghubungkan secara efisien antar pusat kegiatan nasional atau antar pusat kegiatan nasional dengan pusat kegiatan wilayah.

3.6
jalan kolektor primer
jalan yang menghubungkan secara efisien antar pusat kegiatan wilayah atau menghubungkan antara pusat kegiatan wilayah dengan pusat kegiatan lokal.

3.7
jalan arteri sekunder
jalan yang menghubungkan kawasan primer dengan kawasan sekunder kesatu atau menghubungkan kawasan sekunder kesatu dengan kawasan sekunder kesatu atau menghubungkan kawasan sekunder kesatu dengan kawasan sekunder kedua.

3.8
jalan kolektor sekunder
jalan yang menghubungkan kawasan sekunder kedua dengan kawasan sekunder kedua atau menghubungkan kawasan sekunder kedua dengan kawasan sekunder ketiga.

3.9
jalan lokal sekunder
menghubungkan kawasan sekunder kesatu dengan perumahan, menghubungkan kawasan sekunder kedua dengan perumahan, kawasan sekunder ketiga dan seterusnya sampai ke perumahan.

3.10
alinyemen horisontal
proyeksi garis sumbu jalan pada bidang horisontal.

3.11
alinyemen vertikal
proyeksi garis sumbu jalan pada bidang vertikal yang melalui sumbu jalan.

3.12
jarak pandang (S)
jarak di sepanjang tengah-tengah suatu jalur jalan dari mata pengemudi ke suatu titik di muka pada garis yang sama yang dapat dilihat oleh pengemudi.
3.13
jarak pandang menyiap (S_p)
jarak pandangan pengemudi ke depan yang dibutuhkan untuk dengan aman melakukan gerakan mendahului dalam keadaan normal, didefinisikan sebagai jarak pandangan minimum yang diperlukan sejak pengemudi memutuskan untuk menyusul, kemudian melakukan pergerakan penyusulan dan kembali ke lajur semula; S_p diukur berdasarkan anggapan bahwa tinggi mata pengemudi adalah 108 cm dan tinggi halangan adalah 108 cm diukur dari permukaan jalan.
[AASHTO, 2001]

3.14
jarak pandang henti (S_s)
jarak pandangan pengemudi ke depan untuk berhenti dengan aman dan waspada dalam keadaan biasa, didefinisikan sebagai jarak pandangan minimum yang diperlukan oleh seorang pengemudi untuk menghentikan kendaraannya dengan aman begitu melihat adanya halangan di depannya; S_s diukur berdasarkan anggapan bahwa tinggi mata pengemudi adalah 108 cm dan tinggi halangan adalah 60 cm diukur dari permukaan jalan.
[AASHTO, 2001]

3.15
panjang lengkung peralihan (L_s)
panjang jalan yang dibutuhkan untuk mencapai perubahan dari bagian lurus ke bagian lingkaran dari tikungan (kemiringan melintang dari kemiringan normal sampai dengan kemiringan penuh).

3.16
lengkung horisontal
bagian jalan yang menikung dengan radius yang terbatas.

3.17
lengkung vertikal
bagian jalan yang melengkung dalam arah vertikal yang menghubungkan dua segmen jalan dengan kelandaian berbeda.

3.18
lengkung peralihan
lengkung yang disisipkan diantara bagian jalan yang lurus dan bagian jalan yang melengkung berjari-jari tetap R, dimana bentuk lengkung peralihan merupakan clothoide.

3.19
superelevasi
kemiringan melintang permukaan jalan khusus di tikungan yang berfungsi untuk mengimbangi gaya sentrifugal.
3.20
kecepatan rencana (VR)
kecepatan yang dipilih untuk mengikat komponen perencanaan geometri jalan dinyatakan dalam kilometer per jam (km/h).

3.21
waktu reaksi
waktu yang diperlukan oleh seorang pengemudi sejak dia melihat halangan didepannya, membuat keputusan dan sampai dengan saat akan memulai reaksi.

3.22
ekivalen mobil penumpang (emp)
faktor yang menunjukkan pengaruh berbagai tipe kendaraan dibandingkan kendaraan ringan terhadap kecepatan, kemudahan bermanuver, dimensi kendaraan ringan dalam arus lalu lintas (untuk mobil penumpang dan kendaraan ringan yang sasisnya mirip; emp = 1,0) (MKJI, Tahun 1997)

3.23
mobil penumpang
setiap kendaraan bermotor beroda empat atau lebih yang dilengkapi sebanyak-banyaknya delapan tempat duduk tidak termasuk tempat duduk pengemudi, baik dengan maupun tanpa perlengkapan pengangkutan bagasi.

3.24
badan jalan
bagian jalan yang meliputi jalur lalu lintas, dengan atau tanpa jalur pemisah, dan bahu jalan.

3.25
bahu jalan
bagian daerah manfaat jalan yang berdampingan dengan jalur lalu lintas untuk menampung kendaraan yang berhenti, keperluan darurat, dan untuk pendukung samping bagi lapis pondasi bawah, pondasi atas dan permukaan.

3.26
kereb
bangunan pelengkap jalan yang dipasang sebagai pembatas jalur lalu lintas dengan bagian jalan lainnya dan berfungsi juga sebagai penghalang/pencegah kendaraan keluar dari jalur lalu lintas; pengaman terhadap pejalan kaki; mempertegas tepi perkerasan jalan; dan estetika.

3.27
jalur
bagian jalan yang dipergunakan untuk lalu lintas.
3.28
lajur
bagian jalur yang memanjang, dengan atau tanpa marka jalan, yang memiliki lebar cukup untuk satu kendaraan bermotor sedang berjalan, selain sepeda motor.
[PP RI No. 43 Tahun 1993]

3.29
jalur lalu lintas untuk kendaraan
bagian jalur jalan yang direncanakan khusus untuk lintasan kendaraan bermotor.

3.30
jalur lalu lintas untuk pejalan kaki
bagian jalur jalan yang direncanakan khusus untuk pejalan kaki.

3.31
jalur hijau
bagian dari jalan yang disediakan untuk penataan tanaman (pohon, perdu, atau rumput) yang ditempatkan menerus berdampingan dengan trotoar atau dengan jalur sepeda atau dengan bahu jalan atau pada pemisah jalur (median jalan).

3.32
jalur tepian
bagian dari median yang ditinggikan atau separator yang berfungsi memberikan ruang bebas bagi kendaraan yang berjalan pada jalur lalu lintasnya.

3.33
trotoar
jalur lalu lintas untuk pejalan kaki yang umumnya sejajar dengan sumbu jalan dan lebih tinggi dari permukaan perkerasan jalan (untuk menjamin keselamatan pejalan kaki yang bersangkutan).

3.34
median jalan
bagian dari jalan yang tidak dapat dilalui oleh kendaraan dengan bentuk memanjang sejajar jalan, terletak di sumbu/tengah jalan, dimaksudkan untuk memisahkan arus lalu lintas yang berlawanan. median dapat berbentuk median yang ditinggikan (raised), median yang diturunkan (depressed), atau median datar (flush).

3.35
damaja
merupakan ruang sepanjang jalan yang dibatasi oleh lebar, tinggi dan kedalaman ruang bebas tertentu, dimana ruang tersebut meliputi seluruh badan jalan, saluran tepi jalan, trotoar, lereng, ambang pengaman, timbunan dan galian, gorong-gorong, perlengkapan jalan dan bangunan pelengkap lainnya.
[Peraturan Pemerintah RI No. 26 Tahun 1985]
3.36
damija
merupakan ruang sepanjang jalan yang dibatasi oleh lebar dan tinggi tertentu yang diperuntukkan bagi daerah manfaat jalan dan pelebaran jalan maupun penambahan jalur lalu lintas di kemudian hari, serta kebutuhan ruangan untuk pengamanan jalan.
[Peraturan Pemerintah RI No. 26 tahun 1985]

3.37
dawasja
lajur lahan di luar Damija yang berada di bawah pengawasan penguasa jalan, ditujukan untuk penjagaan terhadap terhalangnya pandangan bebas pengemudi dan untuk konstruksi jalan, dalam hal ruang daerah milik jalan tidak mencukupi.
[Peraturan Pemerintah RI No. 26 Tahun 1985]

4 **Ketentuan umum**

Geometri jalan perkotaan harus:

a) memenuhi aspek keselamatan, kelancaran, efisiensi, ekonomi, ramah lingkungan dan kenyamanan;
b) mempertimbangkan dimensi kendaraan;
c) mempertimbangkan efisiensi perencanaan;
d) mendukung hirarki fungsi dan kelas jalan dalam suatu tatanan sistem jaringan jalan secara konsisten;
e) mempertimbangkan pandangan bebas pemakai jalan;
f) mempertimbangkan drainase jalan;
g) mempertimbangkan kepentingan para penyandang cacat.

Alinyemen horisontal dan vertikal harus mempertimbangkan aspek kebutuhan teknik dan aspek kebutuhan pemakai jalan yang memadai dan efisien.

Pemilihan alternatif alinyemen perlu mempertimbangkan:

a) keselamatan dan kenyamanan bagi pengemudi, penumpang dan pejalan kaki;
b) kesesuaian dengan keadaan topografi, geografi dan geologi di sekitar jalan;
c) koordinasi antara alinyemen horisontal dan vertikal;
d) ekonomi dan lingkungan.

5 **Ketentuan teknis**

5.1 **Klasifikasi jalan**

Klasifikasi menurut kelas jalan berkaitan dengan kemampuan jalan untuk menerima beban lalu lintas yang dinyatakan dalam muatan sumbu terberat (MST) dalam satuan ton, dan kemampuan jalan tersebut dalam menyalurkan kendaraan dengan dimensi maksimum tertentu.

Klasifikasi menurut kelas jalan, fungsi jalan dan dimensi kendaraan maksimum (panjang dan lebar) kendaraan yang diijinkan melalui jalan tersebut, secara umum dapat dilihat dalam Tabel 1; (sesuai pasal 11, Peraturan Pemerintah RI No. 43/1993).
Tabel 1
Klasifikasi jalan secara umum menurut kelas, fungsi, dimensi kendaraan maksimum dan muatan sumbu terberat (MST)

<table>
<thead>
<tr>
<th>Kelas Jalan</th>
<th>Fungsi jalan</th>
<th>Dimensi kendaraan maksimum</th>
<th>Muatan sumbu terberat (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Panjang (m)</td>
<td>Lebar (m)</td>
</tr>
<tr>
<td>I</td>
<td>Arteri</td>
<td>18</td>
<td>2,5</td>
</tr>
<tr>
<td>II</td>
<td>Arteri</td>
<td>18</td>
<td>2,5</td>
</tr>
<tr>
<td>III A</td>
<td>Kolektor</td>
<td>18</td>
<td>2,5</td>
</tr>
<tr>
<td>III A</td>
<td>Kolektor</td>
<td>18</td>
<td>2,5</td>
</tr>
<tr>
<td>III B</td>
<td>Lokal</td>
<td>12</td>
<td>2,5</td>
</tr>
<tr>
<td>III C</td>
<td>Lokal</td>
<td>9</td>
<td>2,1</td>
</tr>
</tbody>
</table>

5.2 Penentuan jumlah lajur
Jumlah lajur ditentukan berdasarkan prakiraan volume lalu lintas harian (VLR) yang dinyatakan dalam smp/hari dan menyatakan volume lalu lintas untuk kedua arah. Dalam menghitung VLR, karena pengaruh berbagai jenis kendaraan, digunakan faktor ekivalen mobil penumpang (emp). Ketentuan nilai emp, untuk ruas jalan yang arusnya tidak dipengaruhi oleh persimpangan, seperti ditunjukkan pada Tabel 2 dan Tabel 3, sedangkan apabila ruas jalan tersebut, arus lalu lintasnya dipengaruhi oleh persimpangan dan akses jalan, maka titik kritis perencanaannya ada pada arus lalu lintas persimpangan.

Tabel 2
Ekivalensi mobil penumpang (emp) untuk jalan perkotaan tak terbagi (UD)

<table>
<thead>
<tr>
<th>Tipe Jalan</th>
<th>Arus lalu lintas total dua arah (kend./jam)</th>
<th>emp</th>
<th>MC</th>
<th>Lebar jalur lalu lintas, Wc (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HV</td>
<td></td>
<td>≤ 6</td>
</tr>
<tr>
<td>Dua lajur tak terbagi (2/2 UD)</td>
<td>0 s.d. 1.800</td>
<td>1,3</td>
<td>0,50</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>> 1.800</td>
<td>1,2</td>
<td>0,35</td>
<td>0,25</td>
</tr>
<tr>
<td>Empat lajur tak terbagi (4/2 UD)</td>
<td>0 s.d. 3.700</td>
<td>1,3</td>
<td>0,40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 3.700</td>
<td>1,2</td>
<td>0,25</td>
<td></td>
</tr>
</tbody>
</table>
Tabel 3
Ekivalensi mobil penumpang (emp) untuk jalan perkotaan satu arah dan terbagi

<table>
<thead>
<tr>
<th>Tipe Jalan</th>
<th>Arus lalu lintas per lajur (kend./jam)</th>
<th>emp</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dua lajur satu arah (2/I) dan empat lajur terbagi (4/2D)</td>
<td>0 s.d. 1.050</td>
<td>1,3</td>
<td>0,40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 1.050</td>
<td>1,2</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>Tiga lajur satu arah (3/I) dan enam lajur terbagi (6/2D)</td>
<td>0 s.d. 1.100</td>
<td>1,3</td>
<td>0,40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 1.000</td>
<td>1,2</td>
<td>0,25</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
- HV: kendaraan berat; kendaraan bermotor dengan jarak as lebih dari 3,50 m, biasanya beroda lebih dari 4 (termasuk bus, truk 2 as, truk 3 as dan truk kombinasi)
- MC: sepeda motor; kendaraan bermotor beroda dua atau tiga.

Kendaraan tak bermotor (sepeda, becak dan kendaraan ditarik hewan) tidak diberikan nilai emp, karena sangat bervariasi tergantung kepada kondisi lalu lintas pada saat itu. Dalam hal jumlah kendaraan jenis ini dominan, maka perlu dilakukan perencanaan khusus untuk menentukan fasilitasnya, misalnya dengan jalur khusus.

Pada jalan arteri, jika proporsi kendaraan tak bermotor lebih besar dari 10 % dan atau perbedaan kecepatan rata-rata kendaraan bermotor dengan kendaraan tak bermotor lebih besar dari 30 km/h, maka harus dibuat jalur lambat.

Volume jam sibuk rencana (VJR) merupakan prakiraan volume lalu lintas pada jam sibuk tahun rencana. Pada jalan 2-lajur-2-arah-tak terbagi, VJR dinyatakan dalam smp/jam untuk dua arah. Pada jalan berlajur banyak, misal jalan 4-lajur-2-arah terbagi, maka VJR dihitung dalam smp/jam untuk arah tersibuk (Fsp). VJR dihitung dengan rumus:

Untuk jalan-jalan 2-lajur-2-arah

\[
VJR = VLR \times \frac{k}{100} \times \frac{1}{F}
\]

Untuk jalan-jalan berlajur banyak, per arah

\[
VJR = VLR \times \frac{k}{100} \times \frac{Fsp}{100} \times \frac{1}{F}
\]

dengan pengertian:
- k: faktor volume lalu lintas jam sibuk, %;
- F: faktor variasi tingkat lalu lintas per seperempat jam dalam jam sibuk; dalam hal tidak ada data, boleh digunakan F = 0,8;
- Fsp: koefisien volume lalu lintas dalam arah tersibuk per arah, %, yang ditetapkan berdasarkan data; dalam hal tidak ada data, boleh digunakan Fsp = 60.
VJR digunakan untuk menghitung jumlah lajur jalan dan fasilitas lalu lintas lainnya yang diperlukan pada jalan arteri di kawasan perkotaan.

5.3 Kecepatan rencana (\(V_R \))

Kecepatan yang dipilih untuk mengikat komponen perencanaan geometri jalan dinyatakan dalam kilometer per jam (km/h).

\(V_R \) untuk suatu ruas jalan dengan kelas dan fungsi yang sama, dianggap sama sepanjang ruas jalan tersebut. \(V_R \) untuk masing-masing fungsi jalan ditetapkan sesuai Tabel 4.

Untuk kondisi lingkungan dan atau medan yang sulit, \(V_R \) suatu bagian jalan dalam suatu ruas jalan dapat diturunkan, dengan syarat bahwa penurunan tersebut tidak boleh lebih dari 20 kilometer per jam (km/h).

<table>
<thead>
<tr>
<th>Fungsi jalan</th>
<th>Kecepatan rencana, (V_R) (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Arteri Primer</td>
<td>50 – 100</td>
</tr>
<tr>
<td>2. Kolektor Primer</td>
<td>40 – 80</td>
</tr>
<tr>
<td>3. Arteri Sekunder</td>
<td>50 – 80</td>
</tr>
<tr>
<td>4. Kolektor Sekunder</td>
<td>30 – 50</td>
</tr>
<tr>
<td>5. Lokal Sekunder</td>
<td>30 – 50</td>
</tr>
</tbody>
</table>

5.4 Kendaraan rencana

Dimensi kendaraan bermotor untuk keperluan perencanaan geometri jalan perkotaan, ditetapkan seperti pada Tabel 5 dan seperti diilustrasikan pada Gambar 1, dengan memperhatikan ketentuan pada Tabel 1.
<table>
<thead>
<tr>
<th>Jenis kendaraan rencana</th>
<th>Simbol</th>
<th>Tinggi</th>
<th>Lebar</th>
<th>Panjang</th>
<th>Depan</th>
<th>Belakang</th>
<th>Radius putar minimum</th>
<th>Radius tonjolan minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobil Penumpang</td>
<td>P</td>
<td>1,3</td>
<td>2,1</td>
<td>5,8</td>
<td>0,9</td>
<td>1,5</td>
<td>7,3</td>
<td>4,4</td>
</tr>
<tr>
<td>Truk As Tunggal</td>
<td>SU</td>
<td>4,1</td>
<td>2,4</td>
<td>9,0</td>
<td>1,1</td>
<td>1,7</td>
<td>12,8</td>
<td>8,6</td>
</tr>
<tr>
<td>Bis Gandengan</td>
<td>A-BUS</td>
<td>3,4</td>
<td>2,5</td>
<td>18,0</td>
<td>2,5</td>
<td>2,9</td>
<td>12,1</td>
<td>6,5</td>
</tr>
<tr>
<td>Truk Semitrailer Kombinasi Sedang</td>
<td>WB-12</td>
<td>4,1</td>
<td>2,4</td>
<td>13,9</td>
<td>0,9</td>
<td>0,8</td>
<td>12,2</td>
<td>5,9</td>
</tr>
<tr>
<td>Truk Semitrailer Kombinasi Besar</td>
<td>WB-15</td>
<td>4,1</td>
<td>2,5</td>
<td>16,8</td>
<td>0,9</td>
<td>0,6</td>
<td>13,7</td>
<td>5,2</td>
</tr>
<tr>
<td>Convensional School Bus</td>
<td>SB</td>
<td>3,2</td>
<td>2,4</td>
<td>10,9</td>
<td>0,8</td>
<td>3,7</td>
<td>11,9</td>
<td>7,3</td>
</tr>
<tr>
<td>City Transit Bus</td>
<td>CB</td>
<td>3,2</td>
<td>2,5</td>
<td>12,0</td>
<td>2,0</td>
<td>2,3</td>
<td>12,8</td>
<td>7,5</td>
</tr>
</tbody>
</table>
Gambar 1 Kendaraan rencana
11 dari 46
e) Kendaraan Bus Tempel / Gandengan (A-BUS)

f) Kendaraan Semitrailler Kombinasi Sedang (WB-12)

g) Kendaraan Semitrailler Kombinasi Besar (WB-15)

Gambar 1 Kendaraan rencana (lanjutan)

12 dari 46
5.5 Bagian-bagian jalan

5.5.1 Damaja
Damaja (daerah manfaat jalan) dibatasi oleh (Gambar 2):

a) batas ambang pengaman konstruksi jalan di kedua sisi jalan;
b) tinggi minimum 5 m di atas permukaan perkerasan pada sumbu jalan; dan
c) kedalaman minimum 1,5 meter di bawah permukaan perkerasan jalan.

Damaja diperuntukkan bagi median, perkerasan jalan, separator, bahu jalan, saluran tepi jalan, trotoar, lereng, ambang pengaman dan tidak boleh dimanfaatkan untuk prasarana perkotaan lainnya.

5.5.2 Dawasja
Dawasja (daerah pengawasan jalan) diukur dari tepi jalur luar (perkerasan), seperti ditunjukkan pada Gambar 2, dengan batasan sebagai berikut:

a) jalan arteri minimum 20 meter;
b) jalan kolektor minimum 7 meter;
c) jalan lokal minimum 4 meter.

Untuk keselamatan pemakai jalan, Dawasja di daerah tikungan ditentukan oleh jarak pandangan pengemudi yang ditetapkan sebagai daerah bebas samping di tikungan, sebagaimana diatur dalam sub bab 5.7.2.

5.5.3 Penempatan utilitas
Bangunan utilitas dapat ditempatkan di dalam Damaja dengan ketentuan sebagai berikut [pasal 21 ayat (3) Peraturan Pemerintah RI No.26/1985 tentang jalan]:

Gambar 2 Tipikal Damaja, Damija dan Dawasja
a) untuk utilitas yang berada di atas muka tanah ditempatkan paling tidak 0,60 m dari tepi paling luar bahu jalan atau perkerasan jalan;
b) untuk utilitas yang berada di bawah muka tanah harus ditempatkan paling tidak 1,50 m dari tepi paling luar bahu jalan atau perkerasan jalan.

5.6 Potongan melintang

5.6.1 Komposisi potongan melintang

Potongan melintang jalan terdiri atas bagian-bagian sebagai berikut:
a) jalur lalu-lintas;
b) bahu jalan;
c) saluran samping
d) median, termasuk jalur tepian;
e) trotoar / jalur pejalan kaki;
f) jalur sepeda;
g) separator / jalur hijau;
h) jalur lambat;
i) lereng / talud.

Gambar 3 Tipikal penampang melintang jalan perkotaan 2-lajur-2-arah tak terbagi yang dilengkapi jalur pejalan kaki
Gambar 4 Tipikal potongan melintang jalan 2-lajur-2-arah tak terbagi, yang dilengkapi jalur hijau, jalur sepeda, trotoar dan saluran samping yang ditempatkan di bawah trotoar

Gambar 5 Tipikal potongan melintang jalan yang dilengkapi median (termasuk jalur tepian), pemisah jalur, jalur lambat dan trotoar

5.6.2 Jalur lalu-lintas kendaraan
Jalur lalu lintas kendaraan adalah bagian jalan yang dipergunakan untuk lalu lintas kendaraan yang secara fisik berupa perkerasan jalan. Batas jalur lalu lintas dapat berupa:

a) median jalan;
b) bahu jalan ;
c) trotoar;
d) separator jalan.
Tabel 6 menyajikan tipe-tipe jalan yang disarankan. Tipe jalan 3-lajur-2-arah-tak terbagi dan 4-lajur-2-arah-tak terbagi, tidak disarankan untuk digunakan.

<table>
<thead>
<tr>
<th>Tipe Jalan</th>
<th>Jalur di sisi jalan utama</th>
<th>Perlu Jalur lambat</th>
<th>Perlu trotoar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ν</td>
<td>ν</td>
</tr>
<tr>
<td>2-lajur-2-arah-tak terbagi</td>
<td></td>
<td>ν ν</td>
<td>ν ν</td>
</tr>
<tr>
<td>4-lajur-2-arah terbagi</td>
<td></td>
<td>ν ν</td>
<td>ν ν</td>
</tr>
<tr>
<td>6-lajur-2-arah-terbagi</td>
<td></td>
<td>ν ν</td>
<td>ν ν</td>
</tr>
<tr>
<td>Lebih dari 1 lajur-1-arah</td>
<td></td>
<td>ν ν</td>
<td>ν ν</td>
</tr>
</tbody>
</table>

Catatan: ν = disarankan dilengkapi, tergantung kebutuhan; ν ν = dilengkapi.

Jalur lambat dapat digunakan untuk kendaraan tidak bermotor. Tipikal beberapa tipe jalan dapat dilihat pada Gambar 3, 4 dan 5, dan ketentuan jalur lambat diuraikan pada sub bab 5.6.7.

5.6.3 Lebar jalur

a) Lebar jalur ditentukan oleh jumlah dan lebar lajur serta bahu jalan. Tabel 7 menetapkan ukuran lebar lajur dan bahu jalan sesuai dengan kelas jalannya;

b) Lebar jalur minimum adalah 4,5 m, memungkinkan 2 kendaraan dengan lebar maksimum 2,1 m saling berpapasan. Papasan 2 kendaraan lebar maksimum 2,5 m yang terjadi sewaktu-waktu dapat memanfaatkan bahu jalan.

<table>
<thead>
<tr>
<th>Kelas jalan</th>
<th>Lebar lajur (m)</th>
<th>Lebar bahu sebelah luar (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disarankan</td>
<td>Minimum</td>
</tr>
<tr>
<td></td>
<td>Tanpa trotoar</td>
<td>Ada trotoar</td>
</tr>
<tr>
<td></td>
<td>Disarankan</td>
<td>Minimum</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>Disarankan</td>
</tr>
</tbody>
</table>

Keterangan: *) = jalan 1-jalur-2 arah, lebar 4,50 m

Pada jalan arteri, jalur kendaraan tidak bermotor disarankan dipisah dengan jalur kendaraan bermotor. Bila banyak kendaraan lambat, jalur boleh lebih lebar. Lebar bahu jalan sebelah dalam pada median yang diturunkan atau datar, minimum sebesar 0,50 m.
5.6.4 Lajur
a) Apabila lajur dibatasi oleh marka garis membujur terputus, maka lebar lajur diukur dari sisi dalam garis tengah marka garis tepi jalan sampai dengan garis tengah marka garis pembagi arah pada jalan 2-lajur-2-arah atau sampai dengan garis tengah garis pembagi lajur pada jalan berlajur lebih dari satu.
b) Apabila lajur dibatasi oleh marka garis membujur utuh, maka lebar lajur diukur dari masing-masing tepi sebelah dalam marka membujur garis utuh.

5.6.5 Kemiringan melintang jalan
Untuk kelancaran drainase permukaan, lajur lalu lintas pada bagian alinyemen jalan yang lurus memerlukan kemiringan melintang normal sebagai berikut (lihat Gambar 6) :
 a) untuk perkerasan aspal dan perkerasan beton/semen, kemiringan melintang 2-3%;
 b) pada jalan berlajur lebih dari 2, kemiringan melintang ditambah 1 % ke arah yang sama;
 c) untuk jenis perkerasan yang lain, kemiringan melintang disesuaikan dengan karakteristik permukaannya.

5.6.6 Bahu jalan
a) Kemiringan melintang bahu jalan yang normal 3 - 5% (lihat Gambar 6).
b) Lebar minimal bahu jalan untuk bahu luar dan bahu dalam dapat dilihat dalam Tabel 7.
c) Kemiringan melintang bahu jalan harus lebih besar dari kemiringan melintang lajur kendaraan.
d) Ketinggian permukaan bahu jalan harus menerus dengan permukaan perkerasan jalan.

Gambar 6 Tipikal kemiringan melintang bahu jalan
5.6.7 Jalur lambat

Jalur lambat berfungsi untuk melayani kendaraan yang bergerak lebih lambat dan searah dengan jalur utamanya. Jalur ini dapat berfungsi sebagai jalur peralihan dari hirarki jalan yang ada ke hirarki jalan yang lebih rendah atau sebaliknya. Ketentuan untuk jalur lambat adalah sebagai berikut:

a) Untuk jalan arteri 2 arah terbagi dengan 4 lajur atau lebih, dilengkapi dengan jalur lambat;
b) Jalur lambat direncanakan mengikuti alinyemen jalur cepat dengan lebar jalur dapat mengikuti ketentuan sebelumnya.

5.6.8 Separator jalan

Separator jalan dibuat untuk memisahkan jalur lambat dengan jalur cepat. Separator terdiri atas bangunan fisik yang ditinggikan dengan kereb dan jalur tepian. Lebar minimum separator adalah 1,00 m.

5.6.9 Median jalan

1) Fungsi median jalan adalah untuk:
 a) memisahkan dua ariran lalu lintas yang berlawanan arah;
 b) mencegah kendaraan belok kanan.
 c) lapak tunggu penyeberang jalan.
 d) penempatan fasilitas untuk mengurangi silau dari sinar lampu kendaraan dari arah yang berlawanan.
 e) penempatan fasilitas pendukung jalan;
 f) cadangan lajur (jika cukup luas);
 g) tempat prasarana kerja sementara;
 h) dimanfaatkan untuk jalur hijau;

2) Jalan dua arah dengan empat lajur atau lebih harus dilengkapi median.

3) Jika lebar ruang yang tersedia untuk median < 2,5 m, median harus ditinggikan atau dilengkapi dengan pembatas fisik agar tidak dilanggar oleh kendaraan (Gambar 7 dan 8).

4) Lebar minimum median, terdiri atas jalur tepian dan bangunan pemisah jalan, ditetapkan sesuai Tabel 8. Dalam hal penggunaan median untuk pemasangan fasilitas jalan, agar dipertimbangkan keperluan ruang bebas kendaraan untuk setiap arah.

<table>
<thead>
<tr>
<th>Kelas jalan</th>
<th>Lebar median jalan (m)</th>
<th>Lebar jalur tepian minimum (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Minimum khusus *)</td>
</tr>
<tr>
<td>I, II</td>
<td>2,50</td>
<td>1,00</td>
</tr>
<tr>
<td>III A, III B, III C</td>
<td>1,50</td>
<td>1,00 (median datar)</td>
</tr>
</tbody>
</table>

Catatan : *) digunakan pada jembatan bentang ≥ 50 m, terowongan, atau lokasi Damaja terbatas.
5.6.10 Jalur hijau
Jalur hijau pada median dibuat dengan mempertimbangkan pengurangan silau cahaya lampu kendaraan dari arah yang berlawanan. Selain itu, jalur hijau juga berfungsi untuk pelestarian nilai estetis lingkungan dan usaha mereduksi polusi udara. Tanaman pada jalur hijau dapat juga berfungsi sebagai penghalang pejalan kaki. Pemilihan jenis tanaman dan cara penanamannya pada jalur hijau, agar mengacu kepada Standar Penataan Tanaman Untuk Jalan (Pd. 035/T/BM/1999).

5.6.11 Fasilitas parkir
Jalur lalu lintas tidak direncanakan sebagai fasilitas parkir. Dalam keadaan mendesak fasilitas parkir sejajar jalur lalu lintas di badan jalan dapat disediakan, jika:

a) kebutuhan akan parkir tinggi;
b) fasilitas parkir di luar badan jalan tidak tersedia.
Untuk memenuhi hal-hal tersebut di atas, perencanaan parkir sejajar jalur lalu lintas harus mempertimbangkan hal-hal sebagai berikut:

a) hanya pada jalan kolektor sekunder dan lokal sekunder;
b) lebar lajur parkir minimum 3,0 m;
c) kapasitas jalan yang memadai, dan
d) mempertimbangkan keselamatan lalu lintas.

5.6.12 Jalur pejalan kaki

1) Fasilitas pejalan kaki disediakan untuk pergerakan pejalan kaki. Semua jalan perkotaan harus dilengkapi jalur pejalan kaki di satu sisi atau di kedua sisi. Jalur pejalan kaki harus mempertimbangkan penyandang cacat, dan dapat berupa:
 a) jalur pejalan kaki yang tidak ditinggikan, tetapi diperkeras permukanya;
 b) trotoar;
 c) penyeberangan sebidang;
 d) penyeberangan tidak sebidang (jembatan penyeberangan atau terowongan penyeberangan);
 e) penyandang cacat

2) Jalur pejalan kaki yang tidak ditinggikan, harus ditempatkan di sebelah luar saluran samping. Lebar minimum jalur pejalan kaki yang tidak ditinggikan adalah 1,5 m.

3) Khusus untuk jalan arteri dan kolektor di perkotaan sangat dianjurkan berupa trotoar.

Tabel 9
Lebar trotoar minimum (m)

| Fungsi jalan | Minimum | Minimum khusus *
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arteri primer</td>
<td>1,50</td>
<td></td>
</tr>
<tr>
<td>Kolektor primer</td>
<td></td>
<td>1,50</td>
</tr>
<tr>
<td>Arteri sekunder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolektor Sekunder</td>
<td>1,50</td>
<td>1,00</td>
</tr>
<tr>
<td>Lokal sekunder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Catatan: * digunakan pada jembatan dengan bentang ≥ 50 m atau di dalam terowongan dengan volume lalu lintas pejalan kaki 300 – 500 orang per 12 jam

Potongan melintang trotoar:

a) trotoar hendaknya ditempatkan di sisi luar bahu jalan atau jika jalan dilengkapi jalur parkir, maka trotoar ditempatkan di sebelah luar jalur parkir (Gambar 9 dan 10);
b) bila jalur hijau tersedia dan terletak di sebelah luar bahu atau jalur parkir, maka trotoar harus dibuat bersebelahan dengan jalur hijau;
c) jika trotoar bersebelahan langsung dengan tanah milik perorangan, maka jalur hijau (tanaman) harus terletak di sebelah dalam trotoar (Gambar 11). Namun jika terdapat ruang yang cukup antara trotoar dan tanah milik perorangan, maka jalur hijau boleh ditempatkan di sisi sebelah luar trotoar.

Perencanaan penyeberangan untuk pejalan kaki sebidang, agar mengacu kepada Keputusan Menteri Perhubungan No. KM 60 tahun 1993 tentang Marka Jalan, sedangkan untuk tidak sebidang, agar mengikuti standar atau spesifikasi penyeberangan yang ada.
Gambar 9 Tipikal penempatan trotoar di sebelah luar bahu

Gambar 10 Tipikal penempatan trotoar di sebelah luar jalur parkir
Gambar 11 Tipikal penempatan trotoar di sebelah luar jalur hijau

5.7 Jarak pandang

5.7.1 Jarak pandang henti (S_s)

Jarak pandang (S_s) terdiri dari dua elemen jarak, yaitu:

a) jarak awal reaksi (S_r) adalah jarak pergerakan kendaraan sejak pengemudi melihat suatu halangan yang menyebabkan ia harus berhenti sampai saat pengemudi menginjak rem; dan

b) jarak awal pengereman (S_b) adalah jarak pergerakan kendaraan sejak pengemudi menginjak rem sampai dengan kendaraan tersebut berhenti.

S_s dalam satuan meter, dapat dihitung dengan rumus (AASHTO, 2001):

$$S_s = 0.278 \times V_r \times T + 0.039 \frac{V^2}{a}$$

dengan pengertian:

- V_r kecepatan rencana (km/h)
- T waktu reaksi, ditetapkan 2,5 detik
- a tingkat perlambatan (meter/detik²), ditetapkan 3,4 meter/detik²

Tabel 10 berisi S_s minimum yang dihitung berdasarkan rumus di atas dengan pembulatan-pembulatan untuk berbagai V_r. Setiap bagian jalan harus memenuhi S_s.

22 dari 46
Tabel 10
Jarak pandang henti (S_s)

<table>
<thead>
<tr>
<th>V_R (km/h)</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_s minimum (m)</td>
<td>185</td>
<td>160</td>
<td>130</td>
<td>105</td>
<td>85</td>
<td>65</td>
<td>50</td>
<td>35</td>
</tr>
</tbody>
</table>

5.7.2 Daerah bebas samping di tikungan

Daerah bebas samping dimaksudkan untuk memberikan kemudahan pandangan di tikungan dengan membebaskan obyek-obyek penghalang sejauh M (m), diukur dari garis tengah lajur dalam sampai obyek penghalang pandangan, sehingga persyaratan S_s dipenuhi (Gambar 12).

![Diagram ilustrasi komponen untuk menentukan jarak pandang horizontal (daerah bebas samping)](image)

Daerah bebas samping di tikungan dihitung berdasarkan rumus sebagai berikut (AASHTO, 2001):

$$M = R \left[1 - \cos \left(\frac{28.65 \cdot S_s}{R} \right) \right]$$

dengan pengertian:
- R jari-jari tikungan (m)
- S_s jarak pandang henti (m)
- M jarak yang diukur dari garis tengah lajur dalam sampai obyek penghalang pandangan (m)
Gambar 13 menyajikan nilai M yang dihitung menggunakan rumus di atas. Grafik tersebut dapat dipakai untuk menetapkan M.
Pada kenyataannya, nilai M yang ditunjukkan oleh garis putus-putus dalam grafik pada Gambar 13 tersebut tidak digunakan.

Gambar 13 Batasan perancangan pengendalian disain untuk jarak pandang henti pada tikungan

5.8 Alinyemen horisontal

5.8.1 Bentuk tikungan

Tikungan terdiri atas 3 bentuk umum, yaitu:
1) *Full circle* (FC) yaitu tikungan yang berbentuk busur lingkaran secara penuh. Tikungan ini memiliki satu titik pusat lingkaran dengan jari-jari yang seragam.
2) *Spiral-circle-spiral* (SCS) yaitu tikungan yang terdiri atas 1 lengkung circle dan 2 lengkung spiral
3) *Spiral-spiral* (SS) yaitu tikungan yang terdiri atas dua lengkung spiral.
Penjelasan dan bentuk-bentuk tikungan dapat dilihat pada Gambar 14 s.d. 16.

Gambar 14 Tikungan Full Circle (FC)

Gambar 15 Tikungan Spiral – Circle – Spiral (SCS)
Gambar 16 Tikungan Spiral – Spiral (SS)

5.8.2 Panjang tikungan

Panjang tikungan (Lt) terdiri atas panjang busur lingkaran (Lc) dan panjang 2 lengkung spiral (Ls) yang diukur sepanjang sumbu jalan. Untuk menjamin kelancaran dan kemudahan mengemudikan kendaraan pada saat menikung pada jalan arteri perkotaan, maka panjang suatu tikungan sebaiknya tidak kurang dari 6 detik perjalanan. Panjang ini dapat diperhitungkan berdasarkan \(V_R \) atau ditetapkan sesuai Tabel 11.

Pada tikungan full circle, nilai \(L_s = 0 \), sehingga \(L_t = L_c \).
Pada tikungan spiral-spiral, nilai \(L_c = 0 \), sehingga \(L_t = 2L_s \).
5.8.3 Superelevasi

1. Superelevasi harus dibuat pada semua tikungan kecuali tikungan yang memiliki radius yang lebih besar dari R_{min} tanpa superelevasi. Besarnya superelevasi harus direncanakan sesuai dengan V_R.
2. Superelevasi berlaku pada jalur laju lintas dan bahu jalan.
3. Nilai superelevasi maksimum ditetapkan 6%. Tabel 13, menunjukkan hubungan parameter perencanaan lengkung horizontal dengan kecepatan rencana.
5. Jika kondisi tidak memungkinkan, superelevasi dapat ditiadakan.

5.8.3.1 Jari-jari tikungan

1. Jari-jari tikungan minimum (R_{min}) ditetapkan sebagai berikut:

$$R_{\text{min}} = \frac{V_R^2}{127(e_{\text{max}} + f_{\text{max}})}$$

dengan pengertian:

- R_{min} adalah jari-jari tikungan minimum (m)
- V_R adalah kecepatan rencana (km/h)
- e_{max} adalah superelevasi maksimum (%)
- f_{max} adalah koefisien gesek untuk perkerasan aspal
 \[f = 0,012 - 0,017 \]
2. Tabel 12 dapat dipakai untuk menetapkan R_{min} dengan ketentuan-ketentuan sebagai berikut:

a. Untuk memenuhi kenyamanan, sebaiknya tidak digunakan R_{min}. Pemilihan R_{min} atau tikungan dengan e_{max} untuk suatu tikungan kurang memberikan kenyamanan. Di samping itu, kecepatan kendaraan menikung bervariasi. Dengan demikian, penggunaan R_{min} hanya untuk kondisi terrain yang sulit dan keterbatasan dana, sehingga disarankan digunakan R yang lebih besar dari pada R_{min}.

b. Pada tikungan dengan R yang panjang dapat digunakan R_{min} untuk tikungan tanpa superelevasi.

<table>
<thead>
<tr>
<th>V_R (km/h)</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{max}</td>
<td>0,12</td>
<td>0,13</td>
<td>0,14</td>
<td>0,14</td>
<td>0,15</td>
<td>0,16</td>
<td>0,17</td>
<td>0,17</td>
</tr>
<tr>
<td>R_{min} (m)</td>
<td>435</td>
<td>335</td>
<td>250</td>
<td>195</td>
<td>135</td>
<td>90</td>
<td>55</td>
<td>30</td>
</tr>
</tbody>
</table>
Tabel 13
Hubungan parameter perencanaan lengkung horisontal dengan kecepatan rencana

<table>
<thead>
<tr>
<th>R (m)</th>
<th>e (%)</th>
<th>LR (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7000</td>
<td>NC</td>
<td>0</td>
</tr>
<tr>
<td>5000</td>
<td>NC</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>NC</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>NC</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>RC</td>
<td>14</td>
<td>22</td>
<td>2,1</td>
<td>16</td>
<td>24</td>
<td>2,7</td>
<td>21</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>RC</td>
<td>13</td>
<td>20</td>
<td>2,2</td>
<td>16</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>RC</td>
<td>13</td>
<td>20</td>
<td>2,4</td>
<td>17</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>RC</td>
<td>12</td>
<td>18</td>
<td>2,1</td>
<td>14</td>
<td>21</td>
<td>2,6</td>
<td>18</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>RC</td>
<td>12</td>
<td>18</td>
<td>2,2</td>
<td>14</td>
<td>22</td>
<td>2,7</td>
<td>19</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>RC</td>
<td>11</td>
<td>17</td>
<td>2,1</td>
<td>13</td>
<td>19</td>
<td>2,6</td>
<td>17</td>
<td>26</td>
<td>3,1</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>RC</td>
<td>11</td>
<td>17</td>
<td>2,3</td>
<td>14</td>
<td>21</td>
<td>2,8</td>
<td>18</td>
<td>27</td>
<td>3,4</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>RC</td>
<td>11</td>
<td>17</td>
<td>2,5</td>
<td>15</td>
<td>23</td>
<td>3,1</td>
<td>20</td>
<td>30</td>
<td>3,5</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>NC</td>
<td>0</td>
<td>RC</td>
<td>10</td>
<td>15</td>
<td>2,1</td>
<td>12</td>
<td>17</td>
<td>2,8</td>
<td>17</td>
<td>25</td>
<td>3,4</td>
<td>22</td>
<td>33</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>NC</td>
<td>0</td>
<td>RC</td>
<td>10</td>
<td>15</td>
<td>2,4</td>
<td>13</td>
<td>20</td>
<td>3,1</td>
<td>19</td>
<td>28</td>
<td>3,8</td>
<td>25</td>
<td>37</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>NC</td>
<td>0</td>
<td>RC</td>
<td>10</td>
<td>15</td>
<td>2,8</td>
<td>15</td>
<td>23</td>
<td>3,5</td>
<td>19</td>
<td>28</td>
<td>3,8</td>
<td>25</td>
<td>37</td>
<td>4,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>RC</td>
<td>10</td>
<td>14</td>
<td>2,5</td>
<td>13</td>
<td>19</td>
<td>3,3</td>
<td>18</td>
<td>27</td>
<td>4,0</td>
<td>24</td>
<td>36</td>
<td>4,7</td>
<td>31</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>RC</td>
<td>10</td>
<td>14</td>
<td>3,1</td>
<td>16</td>
<td>24</td>
<td>3,9</td>
<td>22</td>
<td>32</td>
<td>4,6</td>
<td>28</td>
<td>41</td>
<td>5,4</td>
<td>35</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>2,3</td>
<td>11</td>
<td>17</td>
<td>3,5</td>
<td>18</td>
<td>27</td>
<td>4,2</td>
<td>23</td>
<td>35</td>
<td>5,0</td>
<td>30</td>
<td>45</td>
<td>5,8</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>2,6</td>
<td>13</td>
<td>20</td>
<td>3,9</td>
<td>20</td>
<td>30</td>
<td>4,7</td>
<td>26</td>
<td>39</td>
<td>5,5</td>
<td>33</td>
<td>50</td>
<td>6,0</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>3,0</td>
<td>14</td>
<td>22</td>
<td>4,1</td>
<td>21</td>
<td>32</td>
<td>5,0</td>
<td>28</td>
<td>42</td>
<td>5,8</td>
<td>35</td>
<td>52</td>
<td>6,0</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>3,3</td>
<td>16</td>
<td>24</td>
<td>4,4</td>
<td>23</td>
<td>34</td>
<td>5,3</td>
<td>29</td>
<td>44</td>
<td>6,0</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>3,5</td>
<td>17</td>
<td>25</td>
<td>4,5</td>
<td>23</td>
<td>35</td>
<td>5,4</td>
<td>30</td>
<td>45</td>
<td>6,0</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>3,6</td>
<td>17</td>
<td>26</td>
<td>4,6</td>
<td>24</td>
<td>35</td>
<td>5,6</td>
<td>31</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>3,8</td>
<td>18</td>
<td>27</td>
<td>4,8</td>
<td>25</td>
<td>37</td>
<td>5,7</td>
<td>32</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>3,9</td>
<td>19</td>
<td>28</td>
<td>5,0</td>
<td>26</td>
<td>39</td>
<td>5,8</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>4,1</td>
<td>20</td>
<td>30</td>
<td>5,2</td>
<td>27</td>
<td>40</td>
<td>6,0</td>
<td>33</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>4,2</td>
<td>20</td>
<td>30</td>
<td>5,4</td>
<td>28</td>
<td>42</td>
<td>6,0</td>
<td>33</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4,5</td>
<td>22</td>
<td>32</td>
<td>5,6</td>
<td>29</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>4,7</td>
<td>23</td>
<td>34</td>
<td>5,8</td>
<td>30</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>5,0</td>
<td>24</td>
<td>36</td>
<td>6,0</td>
<td>31</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>5,4</td>
<td>26</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>5,8</td>
<td>28</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6,0</td>
<td>29</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

\[e_{\text{max}} = 6\% \quad R = \text{Jari-Jari lengkung} \]
\[V_R = \text{Asumsi kecepatan rencana} \]
\[e = \text{Tingkat superelaviisi} \]
\[L_{\text{r}} = \text{Panjang minimum pencapaian superelaviisi run off} \]
\[NC = \text{Lereng normal} \]
\[RC = \text{Lereng luar diputar sehingga perkerasan mendapat kemiringan melintang sebesar lereng normal} \]

\[V_R = \text{kecepatan rencana} \]
\[R_{\text{min}} = 30 \quad R_{\text{min}} = 33 \quad R_{\text{min}} = 35 \quad R_{\text{min}} = 33 \quad R_{\text{min}} = 35 \]
5.8.3.2 Lengkung peralihan

Lengkung peralihan berfungsi untuk memberikan kesempatan kepada pengemudi untuk mengantisipasi perubahan alinyemen jalan dari bentuk lurus (R tak hingga) sampai bagian lengkung jalan berjari-jari tetap R. Dengan demikian, gaya sentrifugal yang bekerja pada kendaraan saat melintasi tikungan berubah secara berangsur-angsur, baik ketika kendaraan mendekati tikungan maupun meninggalkan tikungan. Ketentuan lengkung peralihan adalah sebagai berikut:

a) bentuk lengkung peralihan yang digunakan adalah bentuk Spiral (*Clothoide*).
b) panjang lengkung peralihan (LS) ditetapkan atas pertimbangan-pertimbangan sebagai berikut:

1. Waktu perjalanan melintasi lengkung peralihan perlu dibatasi untuk menghindarkan kesan perubahan alinyemen yang mendadak, ditetapkan minimum 2 detik (pada kecepatan VR). Kriteria ini dapat dihitung dengan rumus:

\[L_s = \frac{V_R \cdot T}{3,6} \]

dengan pengertian: T waktu tempuh pada lengkung peralihan, ditetapkan 2 detik.
VR kecepatan rencana (km/h)

atau digunakan Tabel 14 berikut ini:

Tabel 14
Panjang minimum lengkung peralihan, LS (m)

<table>
<thead>
<tr>
<th>VR (km/h)</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS – min</td>
<td>56</td>
<td>50</td>
<td>44</td>
<td>39</td>
<td>33</td>
<td>28</td>
<td>22</td>
<td>17</td>
</tr>
</tbody>
</table>

2. Tingkat perubahan kelandaian melintang jalan (Δ) dari bentuk kelandaian normal ke kelandaian superelevasi penuh tidak boleh melampaui Δ maksimum yang ditetapkan seperti pada Tabel 15.

Tabel 15
Tingkat perubahan kelandaian melintang maksimum, Δ (m/m)

<table>
<thead>
<tr>
<th>VR (km/h)</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ (m/m)</td>
<td>1/227</td>
<td>1/213</td>
<td>1/200</td>
<td>1/182</td>
<td>1/167</td>
<td>1/150</td>
<td>1/143</td>
<td>1/133</td>
</tr>
</tbody>
</table>
Panjang pencapaian perubahan kelandaian dari kelandaian normal sampai ke kelandaian penuh superelevasi \((L_s)\) dapat dihitung dengan menggunakan rumus :

\[L_s = W \cdot \Delta^{-1} \cdot (e_d + e_{NC}) \]

dengan pengertian :

\(\Delta\) tingkat perubahan kelandaian melintang maksimum, (\%)
\(W\) lebar satu lajur lalu lintas , (m) (tipikal 3,6 m)
\(e_{NC}\) kemiringan melintang normal, (\%)
\(e_d\) tingkat superelevasi rencana, (\%)
\(L_s\) panjang minimum pencapaian superelevasi, (m)

3. \(L_s\) ditentukan yang memenuhi kedua kriteria tersebut di atas, sehingga dipilih nilai \(L_s\) yang terpanjang.

4. Tikungan yang memiliki \(R\) lebih besar atau sama dengan yang ditunjukkan pada Tabel 16, tidak memerlukan lengkung peralihan.

Diagram pencapaian superelevasi dapat dilihat pada Gambar 17.

\begin{center}
\textbf{Tabel 16}
\end{center}

\begin{center}
\textbf{Jari-jari tikungan yang tidak memerlukan lengkung peralihan}
\end{center}

<table>
<thead>
<tr>
<th>(V_R) (km/h)</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{min}) (m) tanpa lengkung peralihan</td>
<td>5000</td>
<td>3000</td>
<td>2500</td>
<td>2000</td>
<td>1500</td>
<td>1200</td>
<td>800</td>
<td>500</td>
</tr>
</tbody>
</table>

5. Jika lengkung peralihan digunakan, maka posisi lintasan tikungan bergerak dari bagian jalan yang lurus ke arah sebelah dalam (lihat Gambar 15) sebesar \(p\).

Apabila nilai \(p\) kurang dari 0,20 m, maka lengkung peralihan tidak diperlukan, sehingga tipe tikungan menjadi FC.
Gambar 17 Diagram yang memperlihatkan metoda pencapaian superelevasi untuk tikungan ke kanan

5.8.3.3 Diagram superelevasi

a) Superelevasi dicapai secara bertahap dari kemiringan melintang normal pada bagian jalan yang lurus sampai ke superelevasi penuh pada bagian lengkung.

b) Pada tikungan tipe SCS, pencapaian superelevasi dilakukan secara linear, diawali dari bentuk normal pada titik TS, kemudian meningkat secara berangsur-angsur sampai mencapai superelevasi penuh pada titik SC (lihat Gambar 18).
c) Pada tikungan tipe FC, bila diperlukan pencapaian superelevasi dilakukan secara linear (lihat Gambar 19), diawali dari bagian lurus sepanjang 2/3 \(L_S \) dan dilanjutkan pada bagian lingkaran penuh sepanjang 1/3 bagian panjang \(L_S \).

Gambar 18 Pencapaian superelevasi pada tikungan tipe SCS

Gambar 19 Pencapaian superelevasi pada tikungan tipe FC
Keterangan:

PI Titik perpotongan sumbu jalan
TS Titik tangen spiral
Sle Titik permulaan pencapaian superelevasi
SC Titik peralihan spiral ke lengkungan lingkaran
Ls Panjang spiral, TS ke SC (m)
n Superelevasi manual (%)
e Superelevasi

Gambar 20 Metoda pencapaian superelevasi pada tikungan tipe SCS dengan bentuk tiga dimensi
5.8.4 Pelebaran jalur lalu lintas di tikungan

Pelebaran pada tikungan dimaksudkan untuk mempertahankan kondisi pelayanan operasional lalu lintas di bagian tikungan, sehingga sama dengan pelayanan operasional di bagian jalan yang lurus.

Pelebaran (lihat Tabel 17 dan 18), yang nilainya lebih kecil dari 0,60 m dapat diabaikan. Untuk jalan 2-jalur-6-lajur-terbagi, nilai Wc harus dikali 1,5. Untuk jalan 2-jalur-8-lajur terbagi, nilai Wc harus dikali 2.

\[W = W_C - W_n \]

dengan pengertian :

- \(W \) : Pelebaran jalan pada tikungan (m)
- \(W_C \) : Lebar jalan pada tikungan (m)
- \(W_n \) : Lebar jalan pada jalan lurus (m)
Tabel 17
Nilai Perhitungan & Perencanaan untuk Pelebaran Jalan pada Jari-jari Jalan (2 jalur 2 lajur, 1 lajur atau 2 lajur) untuk kendaraan rencana truk as tunggal (SU)

Lebar Jalan = 7,2 m	Lebar Jalan = 6,6 m	Lebar Jalan = 6,0 m
Kec. Rencana (km/h) & Kec. Rencana (km/h) & Kec. Rencana (km/h)

| Jari-jari Lingkaran (m) | 50 | 60 | 70 | 80 | 90 | 100 | 50 | 60 | 70 | 80 | 90 | 100 | 50 | 60 | 70 | 80 | 90 | 100 |
|------------------------|
| 3,000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 |
| 2,500 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
| 2,000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 |
| 1,500 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 |
| 1,000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 |
| 900 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.5 |
| 800 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 |
| 700 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 |
| 600 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 |
| 500 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 |
| 400 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 | 0.4 |
| 300 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.3 | 0.4 | 0.5 | 0.5 |
| 250 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.3 | 0.4 | 0.5 | 0.6 |
| 200 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| 150 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.8 |
| 140 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.9 |
| 130 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 1.0 |
| 120 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 1.1 |
| 110 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 1.2 |
| 100 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 1.3 |

36 dari 46
Tabel 18
Nilai Perhitungan dan Perencanaan untuk Pelebaran Jalan pada Jari-jari Jalan
(2 jalur 2 lajur, 1 lajur atau 2 lajur) untuk kendaraan rencana truk semi trailer kombinasi sedang (WB-12)

<table>
<thead>
<tr>
<th>Jari-jari Lingkaran (m)</th>
<th>Lebar Jalan = 7,2 m</th>
<th>Lebar Jalan = 6,6 m</th>
<th>Lebar Jalan = 6,0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kec. Rencana (km/h)</td>
<td>Kec. Rencana (km/h)</td>
<td>Kec. Rencana (km/h)</td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.2 0.2 0.3 0.3 0.3 0.3</td>
</tr>
<tr>
<td>2,500</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.2 0.3 0.3 0.3 0.3 0.3</td>
</tr>
<tr>
<td>2,000</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.3 0.3 0.3 0.3 0.3 0.4</td>
</tr>
<tr>
<td>1,500</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.1 0.1 0.1 0.1</td>
<td>0.3 0.3 0.4 0.4 0.4 0.4</td>
</tr>
<tr>
<td>1,000</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.1 0.1 0.1</td>
<td>0.3 0.3 0.4 0.4 0.4 0.4</td>
</tr>
<tr>
<td>900</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.1 0.1 0.1 0.1</td>
<td>0.3 0.3 0.4 0.4 0.4 0.5</td>
</tr>
<tr>
<td>800</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.1 0.1 0.1 0.2 0.2</td>
<td>0.3 0.4 0.4 0.5 0.5 0.5</td>
</tr>
<tr>
<td>700</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.1 0.1 0.1 0.2 0.2 0.3</td>
<td>0.4 0.4 0.4 0.5 0.5 0.6</td>
</tr>
<tr>
<td>600</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.1 0.2 0.2 0.2 0.3 0.3</td>
<td>0.4 0.5 0.5 0.6 0.6 0.6</td>
</tr>
<tr>
<td>500</td>
<td>0.0 0.0 0.0 0.1 0.1 0.1</td>
<td>0.2 0.2 0.3 0.3 0.4 0.4</td>
<td>0.5 0.5 0.6 0.7 0.7 0.7</td>
</tr>
<tr>
<td>400</td>
<td>0.0 0.0 0.1 0.1 0.2 0.2</td>
<td>0.3 0.3 0.4 0.4 0.5 0.5</td>
<td>0.6 0.6 0.7 0.8 0.8 0.8</td>
</tr>
<tr>
<td>300</td>
<td>0.0 0.1 0.1 0.2 0.3 0.3</td>
<td>0.3 0.4 0.4 0.5 0.6 0.6</td>
<td>0.6 0.7 0.7 0.9 0.9 0.9</td>
</tr>
<tr>
<td>250</td>
<td>0.1 0.2 0.3 0.3 0.3 0.4</td>
<td>0.4 0.5 0.6 0.6 0.7 0.7</td>
<td>0.7 0.8 0.9 1.1 1.0 1.0</td>
</tr>
<tr>
<td>200</td>
<td>0.2 0.3 0.4 0.4 0.4 0.4</td>
<td>0.5 0.6 0.7 0.7 0.7 0.7</td>
<td>0.8 0.9 1.0 1.3 1.3 1.3</td>
</tr>
<tr>
<td>150</td>
<td>0.4 0.5 0.6 0.6 0.6 0.6</td>
<td>0.7 0.8 0.9 0.9 0.9 0.9</td>
<td>1.0 1.1 1.2 1.2 1.2 1.2</td>
</tr>
<tr>
<td>140</td>
<td>0.5 0.6 0.6 0.6 0.6 0.6</td>
<td>0.8 0.9 0.9 0.9 0.9 0.9</td>
<td>1.1 1.2 1.2 1.2 1.2 1.2</td>
</tr>
<tr>
<td>130</td>
<td>0.6 0.7 0.7 0.7 0.7 0.7</td>
<td>0.9 1.0 1.0 1.0 1.0 1.0</td>
<td>1.2 1.3 1.3 1.3 1.3 1.3</td>
</tr>
<tr>
<td>120</td>
<td>0.6 0.7 0.7 0.7 0.7 0.7</td>
<td>0.9 1.0 1.0 1.0 1.0 1.0</td>
<td>1.2 1.3 1.3 1.3 1.3 1.3</td>
</tr>
<tr>
<td>110</td>
<td>0.7 0.8 0.8 0.8 0.8 0.8</td>
<td>1.0 1.1 1.1 1.1 1.1 1.1</td>
<td>1.3 1.4 1.4 1.4 1.4 1.4</td>
</tr>
<tr>
<td>100</td>
<td>0.7 0.8 0.8 0.8 0.8 0.8</td>
<td>1.0 1.1 1.1 1.1 1.1 1.1</td>
<td>1.3 1.4 1.4 1.4 1.4 1.4</td>
</tr>
<tr>
<td>90</td>
<td>0.9 0.9 0.9 0.9 0.9 0.9</td>
<td>1.2 1.2 1.2 1.2 1.2 1.2</td>
<td>1.5 1.5 1.5 1.5 1.5 1.5</td>
</tr>
<tr>
<td>80</td>
<td>1.0 1.0 1.0 1.0 1.0 1.0</td>
<td>1.3 1.3 1.3 1.3 1.3 1.3</td>
<td>1.6 1.6 1.6 1.6 1.6 1.6</td>
</tr>
<tr>
<td>70</td>
<td>1.2 1.2 1.2 1.2 1.2 1.2</td>
<td>1.5 1.5 1.5 1.5 1.5 1.5</td>
<td>1.8 1.8 1.8 1.8 1.8 1.8</td>
</tr>
</tbody>
</table>
5.8.5 Tikungan majemuk

1) Ada dua macam tikungan majemuk:
 a) tikungan majemuk searah; yaitu dua atau lebih tikungan dengan arah belokan yang sama tetapi dengan jari-jari yang berbeda.
 b) tikungan majemuk balik-arah; yaitu dua atau lebih tikungan dengan arah belokan yang berbeda.

2) Penggunaan tikungan majemuk (Gambar 21 – 24), dipertimbangkan berdasarkan perbandingan R_1 dan R_2, dimana diasumsikan bahwa R_1 adalah jari-jari tikungan yang lebih besar. Ketentuan untuk tikungan majemuk adalah sebagai berikut:
 a) Setiap tikungan majemuk harus disisipi bagian lurus yang memiliki kemiringan normal dengan ketentuan sebagai berikut:
 - Pada tikungan majemuk searah, panjang bagian lurus paling tidak 20 m (lihat Gambar 22).
 - Pada tikungan majemuk balik-arah panjang bagian lurus paling tidak 30 m (lihat Gambar 24).
 b) Jika $\frac{R_2}{R_1} > \frac{2}{3}$, maka tikungan majemuk searah harus dihindarkan (Gambar 21), dan
 Jika $\frac{R_2}{R_1} < \frac{2}{3}$, maka tikungan majemuk balik arah harus disisipi bagian lurus atau bagian spiral /clothoide (lihat Gambar 24).

Gambar 21 Tikungan majemuk searah yang harus dihindarkan
Gambar 22 Tikungan majemuk searah dengan sisipan bagian lurus minimum sepanjang 20 meter

Gambar 23 Tikungan majemuk balik arah yang harus dihindarkan
Gambar 24 Tikungan majemuk balik arah dengan sisipan bagian lurus minimum sepanjang 30 meter

5.9 Alinyemen vertikal

5.9.1 Umum

a) Alinyemen vertikal terdiri atas bagian lurus dan bagian lengkung;
b) Ditinjau dari titik awal perencanaan, bagian lurus dapat berupa landai positif (tanjakan), atau landai negatif (turunan), atau landai nol (datar). Bagian lengkung vertikal dapat berupa lengkung cekung atau lengkung cembung;
a) Kemungkinan pelaksanaan pembangunan secara bertahap harus dipertimbangkan, misalnya peningkatan perkerasan, penambahan lajur, dan dapat dilaksanakan dengan biaya yang efisien. Sekalipun demikian, perubahan alinyemen vertikal dimasa yang akan datang sebaiknya dihindarkan.

5.9.2 Kelandaian maksimum

Pembatasan kelandaian (maksimum) dimaksudkan untuk memungkinkan kendaraan bergerak terus tanpa harus kehilangan kecepatan yang berarti.

Kelandaian maksimum yang sesuai dengan V_R, ditetapkan sesuai Tabel 19.
<table>
<thead>
<tr>
<th>V_R (km/h)</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelandaian maksimum (%)</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Untuk keperluan penyandang cacat kelandaian maksimum ditetapkan 5%.

5.9.3 Panjang lengkung vertikal

Lengkung vertikal harus disediakan pada setiap lokasi yang mengalami perubahan kelandaian, dengan tujuan:

a) mengurangi gencangan akibat perubahan kelandaian; dan
b) menyediakan jarak pandang henti.

![Gambar 25 Parameter yang dipertimbangkan dalam menentukan panjang lengkung vertikal cembung untuk menetapkan jarak pandang henti/menyiap](image)

Lengkung vertikal dalam standar ini ditetapkan berbentuk parabola sederhana. Panjang lengkung vertikal cembung, berdasarkan jarak pandangan henti dapat ditentukan dengan rumus berikut:

a) jika jarak pandang lebih kecil dari panjang lengkung vertikal ($S < L$)

$$L = \frac{AS^2}{658}$$

b) jika jarak pandang lebih besar dari panjang lengkung vertikal ($S > L$)

$$L = 2S - \frac{658}{A}$$
Panjang minimum lengkung vertikal cembung berdasarkan jarak pandangan henti, untuk setiap kecepatan rencana \((V_r) \) dapat menggunakan Tabel 20.

Tabel 20 Kontrol perencanaan untuk lengkung vertikal cembung berdasarkan jarak pandang henti

<table>
<thead>
<tr>
<th>Kecepatan Rencana (km/h)</th>
<th>Jarak Pandang Henti (m)</th>
<th>Nilai Lengkung Vertikal (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>65</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>85</td>
<td>11</td>
</tr>
<tr>
<td>70</td>
<td>105</td>
<td>17</td>
</tr>
<tr>
<td>80</td>
<td>130</td>
<td>26</td>
</tr>
<tr>
<td>90</td>
<td>160</td>
<td>39</td>
</tr>
<tr>
<td>100</td>
<td>185</td>
<td>52</td>
</tr>
</tbody>
</table>

Keterangan : Nilai K adalah perbandingan antara panjang lengkung vertikal cembung (L) dan perbedaan aljabar kelandaian (A), \(K = \frac{L}{A} \)

Panjang lengkung vertikal cekung berdasarkan jarak pandangan henti dapat ditentukan dengan rumus berikut (AASHTO, 2001):

a) Jika jarak pandang lebih kecil dari panjang lengkung vertikal \((S < L) \)

\[
L = \frac{A S^2}{120 + 3.5S}
\]

b) Jika jarak pandang lebih besar dari panjang lengkung vertikal \((S > L) \)

\[
L = 2S - \left(\frac{120 + 3.5S}{A}\right)
\]

dengan pengertian :
- \(L \) panjang lengkung cekung (m)
- \(A \) perbedaan aljabar landai (%)
- \(S \) jarak pandang henti (m)
Panjang minimum lengkung vertikal cekung berdasarkan jarak pandangan henti, untuk setiap kecepatan rencana \(V_R\) dapat menggunakan Tabel 21.

<table>
<thead>
<tr>
<th>Kecepatan Rencana (\text{ (km/h)})</th>
<th>Jarak Pandang Henti (\text{ (m)})</th>
<th>Nilai Lengkung Vertikal (\text{ (K)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>50</td>
<td>65</td>
<td>13</td>
</tr>
<tr>
<td>60</td>
<td>85</td>
<td>18</td>
</tr>
<tr>
<td>70</td>
<td>105</td>
<td>23</td>
</tr>
<tr>
<td>80</td>
<td>130</td>
<td>30</td>
</tr>
<tr>
<td>90</td>
<td>160</td>
<td>38</td>
</tr>
<tr>
<td>100</td>
<td>185</td>
<td>45</td>
</tr>
</tbody>
</table>

Keterangan : Nilai \(K\) adalah perbandingan antara panjang lengkung vertikal cekung \(L\) dan perbedaan aljabar kelandaian \(A\), \(K = L/A\).

Panjang lengkung vertikal cekung berdasarkan jarak pandangan lintasan di bawah dapat ditentukan dengan rumus berikut (AASHTO, 2001):

a) jika jarak pandang lebih kecil dari panjang lengkung vertikal \(S < L\)

\[
L = \frac{AS^2}{800(C-1.5)}
\]

b) jika jarak pandang lebih besar dari panjang lengkung vertikal \(S > L\)

\[
L = 2S - \left[\frac{800(C-1.5)}{A}\right]
\]

dengan pengertian :
\(L\) panjang lengkung vertikal cekung \(m\)
\(A\) perbedaan aljabar landai \(\%\)
\(S\) jarak pandang \(m\)
\(C\) kebebasan vertikal \(m\)
5.9.4 Koordinasi alinyemen

Alinyemen vertikal, alinyemen horisontal dan potongan melintang jalan arteri perkotaan harus dikoordinasikan sedemikian sehingga menghasilkan suatu bentuk jalan yang baik dalam arti memudahkan pengemudi mengemudikan kendaraannya dengan aman dan nyaman. Bentuk kesatuan ketiga elemen jalan tersebut diharapkan dapat memberikan kesan atau petunjuk kepada pengemudi akan bentuk jalan yang akan dilalui di depannya, sehingga pengemudi dapat melakukan antisipasi lebih awal.

Koordinasi alinyemen vertikal dan alinyemen horisontal harus memenuhi ketentuan sebagai berikut:

1. Lengkung horisontal sebaiknya berhimpit dengan lengkung vertikal, dan secara ideal alinyemen horisontal lebih panjang sedikit melingkupi alinyemen vertikal.
2. tikungan yang tajam pada bagian bawah lengkung vertikal cekung atau pada bagian atas lengkung vertikal cembung harus dihindarkan.
3. lengkung vertikal cekung pada landai jalan yang lurus dan panjang, harus dihindarkan.
4. dua atau lebih lengkung vertikal dalam satu lengkung horisontal harus dihindarkan.
5. tikungan yang tajam diantara dua bagian jalan yang lurus dan panjang harus dihindarkan.
Lampiran A
(informatif)

Daftar nama dan lembaga

1) Pemrakarsa
Direktorat Bina Teknik, Direktorat Jenderal Tata Perkotaan dan Tata Perdesaan, Departemen Permukiman dan Prasarana Wilayah.

2) Penyusun

<table>
<thead>
<tr>
<th>Nama</th>
<th>Lembaga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir. Haryanto C. Pranowo, M.Eng.</td>
<td>Direktorat Bina Teknik, Ditjen Tata Perkotaan dan Tata Perdesaan</td>
</tr>
<tr>
<td>Ir. Agusbari Sailendra, M.Sc.</td>
<td>Pusat Litbang Prasarana Transportasi</td>
</tr>
<tr>
<td>Ir. Tasripin Sartiyono, M.T.</td>
<td>Direktorat Bina Teknik, Ditjen Tata Perkotaan dan Tata Perdesaan</td>
</tr>
<tr>
<td>Arif Rachman, ST</td>
<td>Direktorat Bina Teknik, Ditjen Tata Perkotaan dan Tata Perdesaan</td>
</tr>
<tr>
<td>Sumarno, SST</td>
<td>Direktorat Bina Teknik, Ditjen Tata Perkotaan dan Tata Perdesaan</td>
</tr>
</tbody>
</table>
Bibliografi

1. Direktorat Jenderal Bina Marga, Manual Kapasitas Jalan Indonesia, tahun 1997;
4. Direktorat Jenderal Tata Perkotaan dan Tata perdesaan, Tata Cara Penyelenggaraan Pemisah Jalan Perkotaan (No. 04/T/KOTDES/2001);
5. Keputusan Menteri Perhubungan No. KM. 90 Tahun 1993 tentang Marka Jalan;
6. NAASRA, Guide To Traffic Engineering Practice, tahun 1988;
7. Transport and Road Research Laboratory, Towards Safer Roads in Developing Countries, 1993.